

μ PD780031Y, 780032Y, 780033Y, 780034Y

8-BIT SINGLE-CHIP MICROCONTROLLERS

DESCRIPTION

The μ PD780031Y, 780032Y, 780033Y, and 780034Y are products based on the μ PD780031, 780032, 780033, and 780034, with an I²C bus interface supporting multimaster added to make them suitable for application in AV equipment.

A flash memory version, the μ PD78F0034Y which can operate in the same power supply voltage range as the mask ROM version, and various development tools, are also under development.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

 μ PD780024, 780034, 780024Y, 780034Y Subseries User's Manual : U12022E 78K/0 Series User's Manual – Instructions : U12326E

FEATURES

· Internal ROM and RAM

Item Part Number	Program Memory (Internal ROM)	Data Memory (Internal High-Speed RAM)	Package
μPD780031Y μPD780032Y	8 Kbytes 16 Kbytes	512 bytes	64-pin plastic shrink DIP (750 mils) 64-pin plastic QFP (14 × 14 mm)
μPD780033Y	24 Kbytes	1024 bytes	64-pin plastic LQFP (12 × 12 mm)
μPD780034Y	32 Kbytes		

- · External memory expansion space: 64 Kbytes
- Minimum instruction execution time: 0.24 μ s (at fx = 8.38-MHz operation)
- *
- I/O ports: 51 (N-ch open-drain 5-V withstand voltage: 4)
- 10-bit resolution A/D converter: 8 channels (AVDD = 2.7 to 5.5 V)
- · Serial interface: 3 channels
- · Timer: 5 channels
- Power supply voltage: VDD = 1.8 to 5.5 V

APPLICATIONS

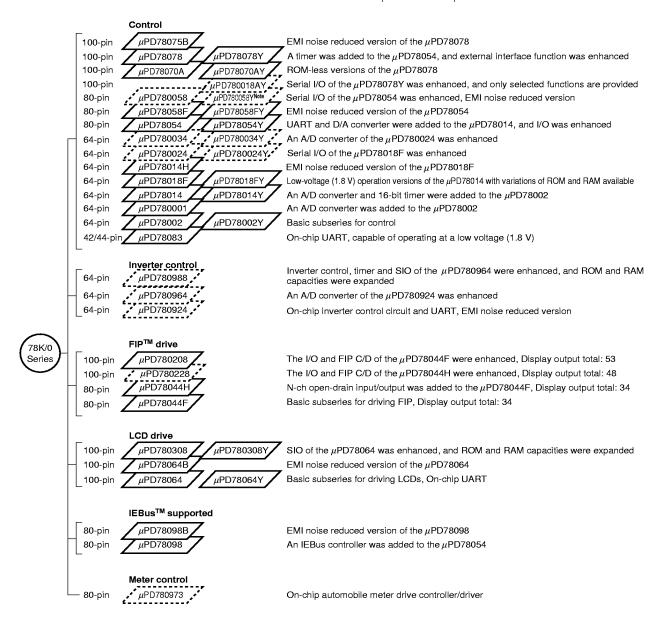
Telephones, home electric appliances, pagers, AV equipment, car audios, office automation equipment, etc.

The information in this document is subject to change without notice.

Document No. U12166EJ1V0DS00 (1st edition) Date Published November 1997 N Printed in Japan The mark ★ shows major revised points.

ORDERING INFORMATION

Part Number	Package
μPD780031YCW-×××	64-pin plastic shrink DIP (750 mils)
μ PD780031YGC- \times \times -AB8	64-pin plastic QFP (14 \times 14 mm)
μ PD780031YGK- \times \times -8A8	64-pin plastic LQFP (12 \times 12 mm)
μ PD780032YCW- $\times\!\!\times\!\!$	64-pin plastic shrink DIP (750 mils)
μ PD780032YGC-×××-AB8	64-pin plastic QFP (14 × 14 mm)
μ PD780032YGK- \times \times -8A8	64-pin plastic LQFP (12 \times 12 mm)
μ PD780033YCW- $\times\!\!\times\!\!$	64-pin plastic shrink DIP (750 mils)
μ PD780033YGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14 mm)
μPD780033YGK-×××-8A8	64-pin plastic LQFP (12 \times 12 mm)
μ PD780034YCW- $\times\!\!\times\!\!$	64-pin plastic shrink DIP (750 mils)
μ PD780034YGC- \times \times -AB8	64-pin plastic QFP (14 $ imes$ 14 mm)
μPD780034YGK-×××-8A8	64-pin plastic LQFP (12 \times 12 mm)


Remark ××× indicates the ROM code suffix.

★ 78K/0 SERIES PRODUCT DEVELOPMENT

These products are a further development in the 78K/0 Series. The designations appearing inside the boxes are subseries names.

Note Under planning

The major functional differences among the Y subseries are shown below.

Subserie		ROM Capacity	Configuration of Serial Interface	•	1/0	V _{DD} MIN. Value
Control	μPD78078Y	48 K to 60 K			88	1.8 V
	μPD78070A	-	3-wire with automatic transmit/receive function 3-wire/UART	: 1 ch : 1 ch	61	2.7 V
	μPD780018AY	48 K to 60 K	3-wire with automatic transmit/receive function Time-division 3-wire I ² C bus (multimaster supported)	: 1 ch : 1 ch : 1 ch	88	
	μPD780058Y	24 K to 60 K	3-wire/2-wire/l ² C 3-wire with automatic transmit/receive function 3-wire/time-division UART	: 1 ch : 1 ch : 1 ch	68	1.8 V
	μPD78058FY	48 K to 60 K	3-wire/2-wire/l ² C	: 1 ch	69	2.7 V
	3-wire with automatic transmit/receive function 3-wire/UART	: 1 ch : 1 ch		2.0 V		
	μPD780034Y	8 K to 32 K	UART	: 1 ch	51	1.8 V
	μPD780024Y		3-wire I ² C bus (multimaster supported)	: 1 ch : 1 ch		
	μPD78018FY	8 K to 60 K	3-wire/2-wire/I ² C 3-wire with automatic transmit/receive function	: 1 ch : 1 ch	53	
	μPD78014Y	8 K to 32 K	3-wire/2-wire/SBI/I ² C 3-wire with automatic transmit/receive function	: 1 ch : 1 ch		2.7 V
	μPD78002Y	8 K to 16 K	3-wire/2-wire/SBI/I ² C	: 1 ch		
LCD drive	μPD780308Y	48 K to 60 K	3-wire/2-wire/l ² C 3-wire/time-division UART 3-wire	: 1 ch : 1 ch : 1 ch	57	2.0 V
	μPD78064Y	16 K to 32 K	3-wire/2-wire/l ² C 3-wire/UART	: 1 ch : 1 ch	57	

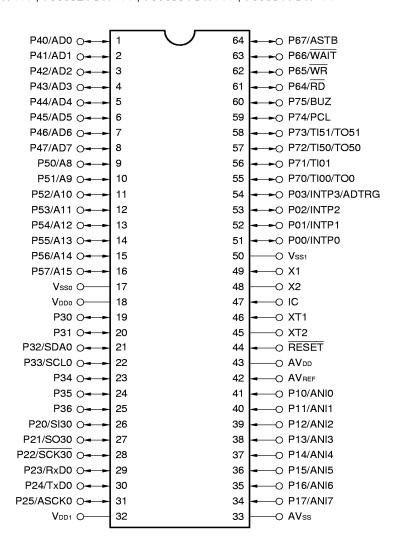
Remark The functions other than the serial interface are common to the Subseries without Y.

FUNCTION OVERVIEW

Item	Part Number	μPD780031Y	μPD780032Y	μPD780033Y	μPD780034Y			
Internal	ROM	8 Kbytes	16 Kbytes	24 Kbytes	32 Kbytes			
memory	High-speed RAM	512 bytes	512 bytes 1024 bytes					
Memory space	ce	64 Kbytes						
General-purp	oose registers	8 bits × 32 registers (8 bits × 32 registers (8 bits × 8 registers × 4 banks)					
Minimum instr	ruction execution time	On-chip variable fund	tion of minimum instruc	ction execution time				
	When main system clock selected	0.24 μs/0.48 μs/0.95	μs/1.91 μs/3.81 μs (at	8.38-MHz operation)				
	When subsystem clock selected	122 μs (at 32.768-kH	z operation)					
Instruction se	ət		ts \times 8 bits,16 bits \div 8 bireset, test, Boolean op	'				
I/O ports		Total		: 51				
		CMOS input CMOS I/O N-ch open-drain I/O (5-V withstand voltage) 4						
A/D converte	er	10-bit resolution × 8 channels Low-voltage operation available: AVDD = 2.7 to 5.5 V						
Serial interfa	ce	3-wire serial I/O mode : 1 channel UART mode : 1 channel I ² C bus mode (multimaster supported) : 1 channel						
Timer		16-bit timer/event co 8-bit timer/event co Watch timer Watchdog timer	unter : 2 : 1	channel channels channel channel				
Timer output		3 (8-bit PWM output	capable: 2)					
Clock output		65.5 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.10 MHz, 4.19 MHz, 8.38 MHz (at 8.38-MHz operation with main system clock) 32.768 kHz (at 32.768-kHz operation with subsystem clock)						
Buzzer outpu	ut	1.02 kHz, 2.05 kHz, 4.10 kHz, 8.19 kHz (at 8.38-MHz operation with main system clock)						
Vectored Maskable		Internal: 13, external: 5						
interrupt Non-maskable Software		Internal: 1						
		1						
Power supply voltage		V _{DD} = 1.8 to 5.5 V						
Operating ambient temperature		T _A = -40 to +85°C						
Package		64-pin plastic shrink DIP (750 mils) 64-pin plastic QFP (14 × 14 mm) 64-pin plastic LQFP (12 × 12 mm)						

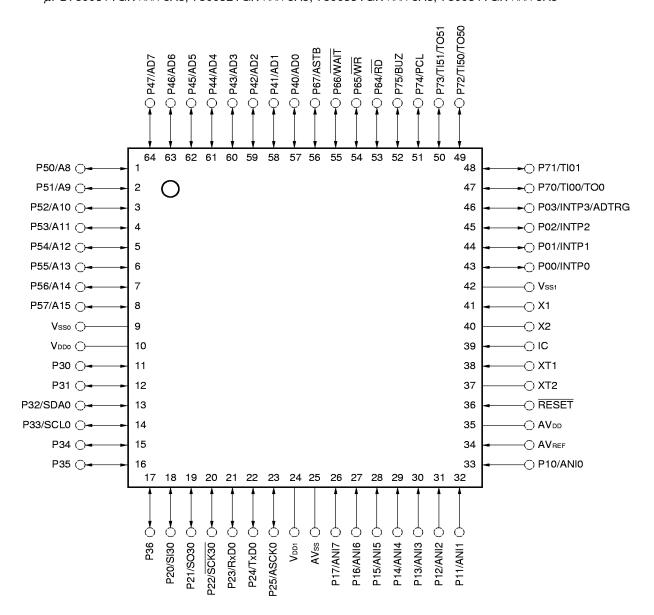
 \star

CONTENTS


•	1. PIN	I CONFIGURATION (Top View)	7
2	2. BL	OCK DIAGRAM	10
;	3. PIN	I FUNCTIONS	11
	3.1	Port Pins	11
	3.2	Non-port Pins	12
	3.3	Pin I/O Circuits and Recommended Connection of Unused Pins	14
4	4. ME	MORY SPACE	16
į	5. PER	RIPHERAL HARDWARE FUNCTION FEATURES	17
	5.1	Ports	17
	5.2	Clock Generator	
	5.3	Timer/Counter	
	5.4	Clock Output/Buzzer Output Control Circuit	
	5.5	A/D Converter	
	5.6	Serial Interface	25
(6. INT	ERRUPT FUNCTIONS	28
-	7. EX	TERNAL DEVICE EXPANSION FUNCTIONS	31
8	B. STA	ANDBY FUNCTIONS	31
(9. RES	SET FUNCTIONS	31
•	10. INS	STRUCTION SET	32
	11. ELE	ECTRICAL SPECIFICATIONS	34
	12. PA	CKAGE DRAWINGS	55
4	APPEN	IDIX A. DEVELOPMENT TOOLS	58
4	APPEN	IDIX B. RELATED DOCUMENTS	61

1. PIN CONFIGURATION (Top View)

• 64-pin plastic shrink DIP (750 mils)


μPD780031YCW-xxx, 780032YCW-xxx, 780033YCW-xxx, 780034YCW-xxx

- Cautions 1. Connect the IC (Internally Connected) pin directly to Vsso or Vss1.
 - 2. Connect the AVss pin to Vsso.

Remark When the μ PD780031Y, 780032Y, 780033Y, and 780034Y are used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to VDD0 and VDD1 individually and connecting Vss0 and Vss1 to different ground lines, is recommended.

- 64-pin plastic QFP (14 × 14 mm)
 μPD780031YGC-xxx-AB8, 780032YGC-xxx-AB8, 780033YGC-xxx-AB8, 780034YGC-xxx-AB8
- 64-pin plastic LQFP (12 × 12 mm) $\mu PD780031YGK-xxx-8A8, 780032YGK-xxx-8A8, 780033YGK-xxx-8A8, 780034YGK-xxx-8A8$

- ★ Cautions 1. Connect the IC (Internally Connected) pin directly to Vss₀ or Vss₁.
 - 2. Connect the AVss pin to Vsso.

Remark When the μ PD780031Y, 780032Y, 780033Y, and 780034Y are used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to VDD0 and VDD1 individually and connecting Vss0 and Vss1 to different ground lines, is recommended.

A8 to A15 : Address Bus P70 to P75 : Port 7

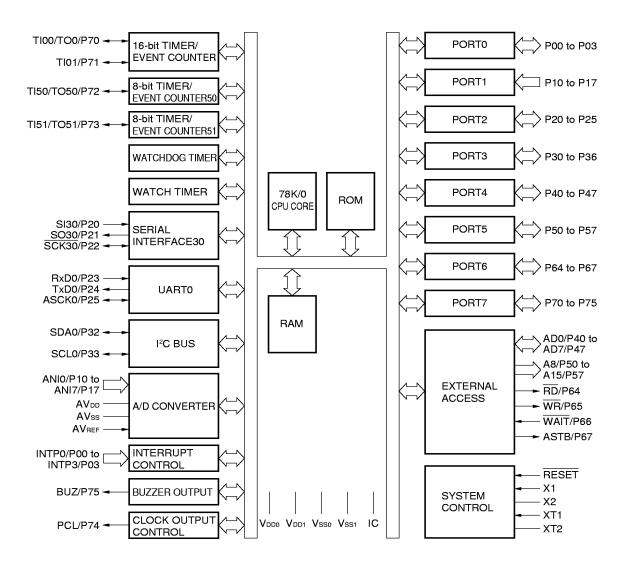
AD0 to AD7 : Address/Data Bus PCL : Programmable Clock

ASCK0 : Asynchronous Serial Clock RxD0 : Receive Data
ASTB : Address Strobe SCK30 : Serial Clock
AVDD : Analog Power Supply SCL0 : Serial Clock

AVREF : Analog Reference Voltage SDA0 : Serial Data **AV**ss : Analog Ground SI30 : Serial Input BUZ : Buzzer Clock **SO30** : Serial Output IC : Internally Connected TI00, TI01, TI50, TI51 : Timer Input : Interrupt from Peripherals TO0, TO50, TO51 INTP0 to INTP3 : Timer Output P00 to P03 : Port 0 TxD0 : Transmit Data

 P00 to P03
 : Port 0
 TxD0
 : Transmit Data

 P10 to P17
 : Port 1
 VDD0, VDD1
 : Power Supply


 P20 to P25
 : Port 2
 Vsso, Vss1
 : Ground

 P30 to P36
 : Port 3
 WAIT
 : Wait

P40 to P47 : Port 4 $\overline{\text{WR}}$: Write Strobe

P50 to P57 : Port 5 X1, X2 : Crystal (Main System Clock)
P64 to P67 : Port 6 XT1, XT2 : Crystal (Subsystem Clock)

2. BLOCK DIAGRAM

Remark The internal ROM and RAM capacities depend on the product.

3. PIN FUNCTIONS

3.1 Port Pins (1/2)

Pin Name	I/O		Function	After Reset	Alternate Function
P00	1/0	Port 0		Input	INTP0
P01		4-bit input/output port.		·	INTP1
P02		Input/output can be specified bit	-wise. n-chip pull-up resistor can be connected by		INTP2
P03		software.	in emp pair up recipier can be confidence by		INTP3/ADTRG
P10 to P17	Input	Port 1 8-bit input only port.		Input	ANI0 to ANI7
P20	1/0	Port 2		Input	SI30
P21		6-bit input/output port.			SO30
P22		Input/output can be specified bit When used as an input port, an o	-wise. on-chip pull-up resistor can be connected by		SCK30
P23		software.			RxD0
P24					TxD0
P25					ASCK0
P30	1/0	Port 3	N-ch open-drain input/output port.	Input	_
P31		7-bit input/output port.	P30 and P31 on-chip pull-up resistors		
P32		Input/output can be specified bit-wise.	can be specified by mask option. LEDs can be driven directly.		SDA0
P33					SCL0
P34			When used as an input port, an on-chip		_
P35			pull-up resistor can be connected by		
P36			software.		
P40 to P47	1/0	Port 4 8-bit input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be connected by software. Interrupt request flag (KRIF) is set to 1 by the falling edge detection.		Input	AD0 to AD7
P50 to P57	I/O	Port 5 8-bit input/output port. LEDs can be driven directly. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be connected by software.		Input	A8 to A15
P64	1/0	Port 6			RD
P65		4-bit input/output port.			WR
P66		Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be connected by			WAIT
P67		software.			ASTB

3.1 Port Pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
P70	1/0	Port 7	Input	TI00/TO0
P71		6-bit input/output port.		TI01
P72		Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be connected by		TI50/TO50
P73		software.		TI51/TO51
P74				PCL
P75				BUZ

3.2 Non-port Pins (1/2)

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0	Input	External interrupt request input for which the valid edge (rising edge,	Input	P00
INTP1		falling edge, or both rising edge and falling edge) can be specified.		P01
INTP2				P02
INTP3				P03/ADTRG
SI30	Input	Serial interface serial data input.	Input	P20
SO30	Output	Serial interface serial data output.	Input	P21
SDA0	1/0	Serial interface serial data input/output.	Input	P32
SCK30	1/0	Serial interface serial clock input/output.	Input	P22
SCL0				P33
RxD0	Input	Serial data input for asynchronous serial interface.	Input	P23
TxD0	Output	Serial data output for asynchronous serial interface.	Input	P24
ASCK0	Input	Serial clock input for asynchronous serial interface.	Input	P25
T100	Input	External count clock input to 16-bit timer (TM0). Capture trigger input to capture register (CR01) of 16-bit timer (TM0).	Input	P70/TO0
TI01		Capture trigger input to capture register (CR00) of 16-bit timer (TM0).		P71
TI50		External count clock input to 8-bit timer (TM50).		P72/TO50
TI51		External count clock input to 8-bit timer (TM51).		P73/TO51
TO0	Output	16-bit timer (TM0) output.	Input	P70/TI00
TO50		8-bit timer (TM50) output (shared with 8-bit PWM output).	Input	P72/TI50
TO51		8-bit timer (TM51) output (shared with 8-bit PWM output).		P73/TI51
PCL	Output	Clock output (for trimming of main system clock and subsystem clock).	Input	P74
BUZ	Output	Buzzer output.	Input	P75
AD0 to AD7	I/O	Lower address/data bus for extending memory externally.	Input	P40 to P47
A8 to A15	Output	Higher address bus for extending memory externally.	Input	P50 to P57
RD	Output	Strobe signal output for read operation of external memory.	Input	P64
WR		Strobe signal output for write operation of external memory.		P65
WAIT	Input	Inserting wait for accessing external memory.	Input	P66
ASTB	Output	Strobe output which externally latches address information output to port 4 and port 5 to access external memory.	Input	P67

3.2 Non-port Pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
ANI0 to ANI7	Input	A/D converter analog input.	Input	P10 to P17
ADTRG	Input	A/D converter trigger signal input.	Input	P03/INTP3
AVREF	Input	A/D converter reference voltage input.	_	_
AVDD	_	A/D converter analog power supply. Set the same potential as that of VDDD or VDD1.	_	_
AVss	_	A/D converter ground potential. Set the same potential as that of Vsso or Vss1.	_	_
RESET	Input	System reset input.	_	_
X1	Input	Connecting crystal resonator for main system clock oscillation.	_	_
X2	_		_	_
XT1	Input	Connecting crystal resonator for subsystem clock oscillation.	_	_
XT2	_		_	_
V _{DD0}	_	Positive power supply for ports.	_	_
Vsso	_	Ground potential of ports.	_	_
V _{DD1}	_	Positive power supply (except ports).	_	_
V _{SS1}	_	Ground potential (except ports).	_	_
IC	_	Internally connected. Connect directly to Vsso or Vss1.	_	_

*

3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 3-1. For the input/output circuit configuration of each type, see Figure 3-1.

Table 3-1. Input/Output Circuit Type of Each Pin

	Pin Name	Input/output Circuit Type	1/0	Recommended Connection when not Used
	P00/INTP0	8-C	Input	Independently connect to Vsso via a resistor.
	P01/INTP1			
	P02/INTP2			
	P03/INTP3			
	P10/ANI0 to P17/ANI7	25	Input	Independently connect to VDDO or VSSO via a resistor.
	P20/SI30	8-C	Input/output	
	P21/SO30	5-H		
	P22/SCK30	8-C		
	P23/RxD0			
	P24/TxD0	5-H		
	P25/ASCK0	8-C		
	P30, P31	13-Q	Input/output	Independently connect to VDDD via a resistor.
*	P32/SDA0	13-R		
*	P33/SCL0			
	P34	8-C		Independently connect to VDDD or VSSD via a resistor.
	P35	5-H		
	P36	8-C		
	P40/AD0 to P47/AD7	5-H	Input/output	Independently connect to VDDD via a resistor.
	P50/A8 to P57/A15		Input/output	Independently connect to VDDD or VSSD via a resistor.
	P64/RD		Input/output	
	P65/WR			
	P66/WAIT			
	P67/ASTB			
	P70/TI00/TO0	8-C		
	P71/TI01			
	P72/TI50/TO50			
	P73/TI51/TO51			
	P74/PCL	5-H		
	P75/BUZ			
	RESET	2	Input	_
	XT1	16		Connect to VDDD.
	XT2		_	Leave open.
	AVDD			Connect to VDD0.
*	AVREF	_		Connect to Vsso.
*	AVss	_		
*	IC			Connect directly to Vsso or Vss1.

TYPE 2 TYPE 13-R★ O IN/OUT data output disable INO Schmitt-Triggered Input with Hysteresis Characteristics TYPE 5-H TYPE 16 feedback pullup cut-off enable $V_{\underline{D}\underline{D}0}$ P-ch data P-ch O IN/OUT output - N-ch disable XT1 XT2 input enable TYPE 8-C TYPE 25 P-ch pullup Comparator enable V_{DD0} data P-ch Vsso O IN VREF (threshold voltage) O IN/OUT output - N-ch input disable ‴ Vsso enable TYPE 13-Q V_{DD0} (Mask Option) O IN/OUT data output disable input enable

Figure 3-1. Pin Input/Output Circuits

4. MEMORY SPACE

Figure 4-1 shows the memory map of the μ PD780031Y, 780032Y, 780033Y, and 780034Y.

FFFFH Special Function Registers (SFR) 256 × 8 bits FF00H **FEFFH** General Registers 32×8 bits **FEE0H FEDFH** Internal High-Speed RAM^{Note} mmmmH mmmmH - 1 nnnnH **Data Memory** Use Prohibited Program Area Space 1000H **OFFFH CALLF Entry Area** F800H 0800H F7FFH 07FFH Program Area External Memory Program Memory 0080H 007FH Space nnnnH + 1 **CALLT Table Area** nnnnH 0040H 003FH Internal ROM^{Note} Vector Table Area 0000H 0000H

Figure 4-1. Memory Map

Note The internal ROM capacity and internal high-speed RAM capacity depend on the products (see the following table).

Part Number	Internal ROM Last Address nnnnH	Internal High-Speed RAM Start Address mmmmH
μPD780031Y	1FFFH	FD00H
μPD780032Y	3FFFH	
μPD780033Y	5FFFH	FB00H
μPD780034Y	7FFFH	

5. PERIPHERAL HARDWARE FUNCTION FEATURES

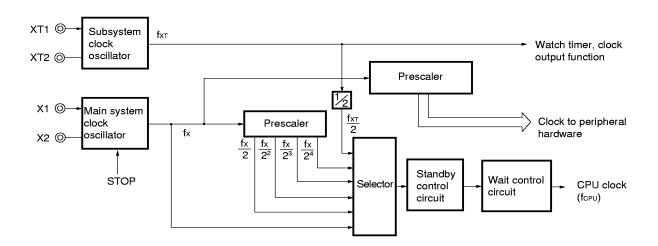
5.1 Ports

The following 3 types of I/O ports are available.

CMOS input (Port 1) : 8
 CMOS input/output (Port 0, Port 2 to Port 7) : 39
 N-channel open-drain input/output (P30 to P33) : 4
 Total : 51

Table 5-1. Port Functions

Name	Pin Name	Function	
Port 0	P00 to P03	o P03 Input/output port pins. Input/output specifiable bit-wise. When used as input port pins, on-chip pull-up resistor can be connected by software.	
Port 1	P10 to P17	Input-only port pins.	
Port 2	P20 to P25	Input/output port pins. Input/output specifiable bit-wise. When used as input port pins, on-chip pull-up resistor can be connected by software.	
Port 3 P30 to P33 N-ch open-drain input/output port pins. Input/output specifiable bit-wis On-chip pull-up resistor can be connected by mask option. LEDs can be driven directly.		, , , , , , , , , , , , , , , , , , ,	
	P34 to P36	Input/output port pins. Input/output specifiable bit-wise. When used as input port pins, on-chip pull-up resistor can be connected by software.	
Port 4	P40 to P47	Input/output port pins. Input/output specifiable bit-wise. When used as input port pins, on-chip pull-up resistor can be connected by software. Test input flag (KRIF) is set to 1 by falling edge detection.	
Port 5	P50 to P57	Input/output port pins. Input/output specifiable bit-wise. When used as input port pins, on-chip pull-up resistor can be connected by software. LEDs can be driven directly.	
Port 6	P64 to P67	Input/output port pins. Input/output specifiable bit-wise. When used as input port pins, on-chip pull-up resistor can be connected by software.	
Port 7	P70 to P75	Input/output port pins. Input/output specifiable bit-wise. When used as input port pins, on-chip pull-up resistor can be connected by software.	


5.2 Clock Generator

A system clock generator is incorporated.

Also, the variation of the minimum instruction execution time is available.

- 0.24 μ s/0.48 μ s/0.95 μ s/1.91 μ s/3.81 μ s (at 8.38-MHz operation with main system clock)
- 122 μs (at 32.768-kHz operation with subsystem clock)

Figure 5-1. Block Diagram of Clock Generator

5.3 Timer/Counter

Five timer/counter channels are incorporated.

16-bit timer/event counter: 1 channel
8-bit timer/event counter: 2 channels
Watch timer: 1 channel
Watchdog timer: 1 channel

Table 5-2. Operations of Timer/Event Counter

		16-Bit Timer/ Event Counter TM0	8-Bit Timer/ Event Counter TM50, TM51	Watch Timer	Watchdog Timer
Оре	eration mode				
	Interval timer	2 channels ^{Note 1}	2 channels	1 channel ^{Note 2}	1 channel ^{Note 3}
	External event counter	1 channel	2 channels	_	_
Fur	nction				
	Timer output	1 output	2 outputs	1	_
	PWM output	_	2 outputs	1	_
	Pulse width measurement	2 inputs	_		_
	Square wave output	1 output	2 outputs	1	_
	One-shot pulse output	1 output	_		_
	Interrupt source	2	2	2	1

Notes 1. When capture/compare registers 00, 01 (CR00, CR01) are both specified as compare registers

- 2. The watch timer can perform both watch timer and interval timer functions at the same time.
- 3. The watchdog timer has the watchdog timer and interval timer functions. However, use the watchdog timer by selecting either the watchdog timer function or the interval timer function.

*

Internal bus ► INTTM00 Noise 16-bit capture/compare elimi-nation register 0 (CR00) TI01/P71@circuit Match fx/2² 16-bit timer register fx/26 Clear Output (TMO) -⊚ TO0/TI00/P70 control circuit Noise Match elimination circuit Noise 16-bit capture/compare register 1 (CR01) TI00/TO0/P70@ nation Selector ► INTTM01 Internal bus

Figure 5-2. Block Diagram of 16-bit Timer/Event Counter TM0

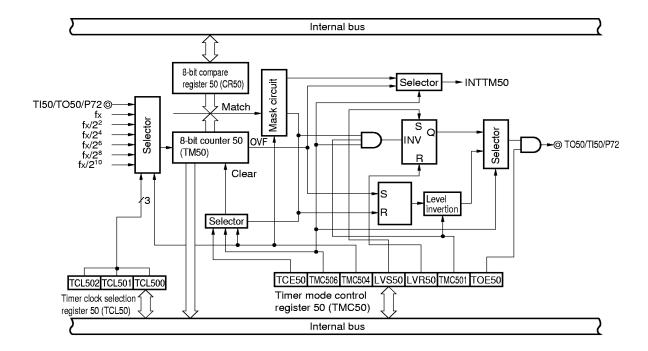
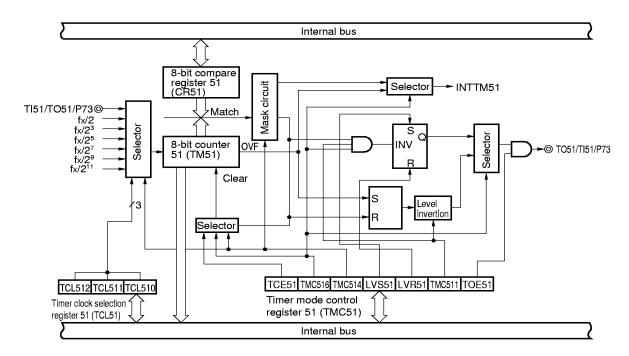
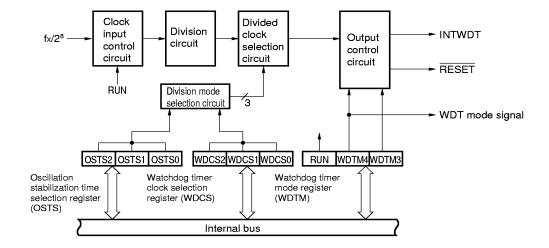



Figure 5-3. Block Diagram of 8-bit Timer/Event Counter TM50


Figure 5-4. Block Diagram of 8-bit Timer/Event Counter TM51

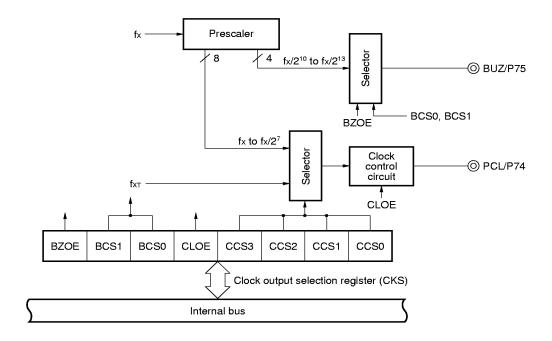
Clear fx/2⁷ **-**INTWT Selector 9-bit prescaler 5-bit counter fw fw 2⁵ fw 2⁶ $\frac{\text{fw}}{2^7}$ $\frac{\text{fw}}{2^4}$ fw 28 $\frac{fw}{2^9}$ Clear Selector -INTWTI WTM7 WTM6 WTM5 WTM4 WTM1 WTM0 0 Watch timer mode control register (WTM) Internal bus

Figure 5-5. Block Diagram of Watch Timer

Figure 5-6. Block Diagram of Watchdog Timer

5.4 Clock Output/Buzzer Output Control Circuit

A clock output/buzzer output control circuit (CKU) is incorporated.

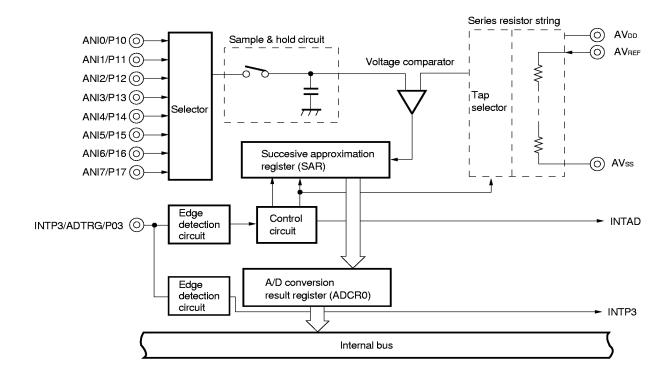

Clocks with the following variation of frequency can be output as a clock output.

- 65.5 kHz/131 kHz/262 kHz/524 kHz/1.05 MHz/2.10 MHz/4.19 MHz/8.38 MHz (at 8.38-MHz operation with main system clock)
- 32.768 kHz (at 32.768-kHz operation with subsystem clock)

Clocks with the following variation of frequency can be output as a buzzer output.

• 1.02 kHz/2.05 kHz/4.10 kHz/8.19 kHz (at 8.38-MHz operation with main system clock)

Figure 5-7. Block Diagram of Clock Output/Buzzer Output Control Circuit CKU


5.5 A/D Converter

An A/D converter of 10-bit resolution \times 8 channels is incorporated.

The following two types of the A/D conversion operation start-up methods are available.

- · Hardware start
- · Software start

Figure 5-8. Block Diagram of A/D Converter

5.6 Serial Interface

Three channels of the serial interface are incorporated.

- Serial interface UART0
- Serial interface SIO30
- · Serial interface IIC0

(1) Serial interface UART0

The serial interface UART0 has two modes, asynchronous serial interface (UART) mode and infrared data transfer mode.

· Asynchronous serial interface (UART) mode

This mode enables full-duplex operation wherein one byte of data is transmitted and received after the start bit.

The on-chip dedicated UART baud rate generator enables communication using a wide range of selectable baud rates. In addition, a baud rate can be also defined by dividing the clock input to the ASCK0 pin. The dedicated UART baud rate generator can also be used to generate a MIDI-standard baud rate (31.25 kbps).

Infrared data transfer mode

This mode enables pulse output and pulse reception in data format.

This mode can be used for office equipment applications such as personal computers.

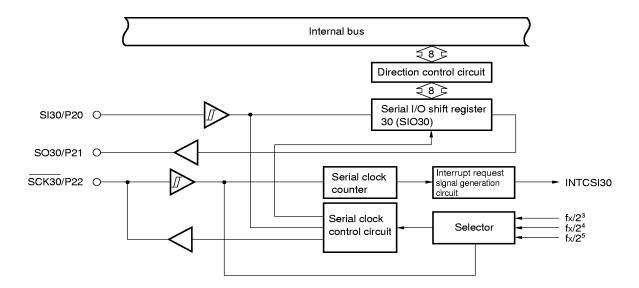
Internal bus **ASIMO** Receive buffer RXB0 TXE0 RXE0 PS00 CL0 SL0 ISRMO | IRDAMO registe ASIS0 Transmit shift Receive RxD0/P23 (PE0 FEO OVEO shift register TxD0/P24 () Receive control control -INTSTO -INTSR0 check - @ P25/ASCK0 Baud rate generator fx/2 to fx/27

Figure 5-9. Block Diagram of Serial Interface UART0

(2) Serial interface SIO30

The serial interface SIO30 has the 3-wire serial I/O mode.

• 3-wire serial I/O mode (fixed as MSB first)


This is an 8-bit data transfer mode using three lines: serial clock line (SCK30), serial output line (SO30), and serial input line (SI30).

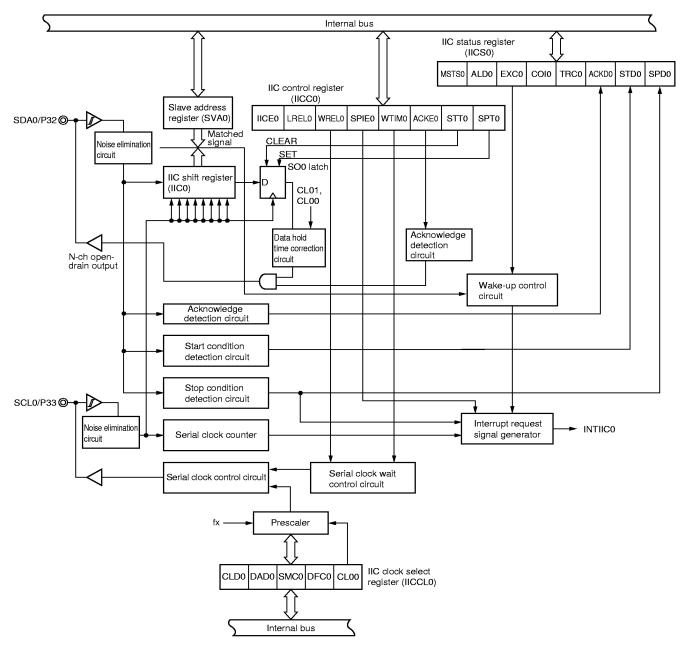
Since simultaneous transmit and receive operations are available in the 3-wire serial I/O mode, the processing time for data transfer is reduced.

The first bit in 8-bit data in the serial transfer is fixed as MSB.

The 3-wire serial I/O mode is useful for connection to a peripheral I/O device that includes a clocked serial interface, a display controller, etc.

Figure 5-10. Block Diagram of Serial Interface SIO30

(3) Serial interface IIC0


The serial interface IIC0 has the I²C (Inter IC) bus mode (multimaster supported).

I²C bus mode (multimaster supported)

This is an 8-bit data transfer mode using two lines: serial clock line (SCL0) and serial data bus line (SDA0). This mode complies with the I²C bus format, and can output "start condition", "data", and stop condition" during transmission via the serial data bus. These data are automatically detected by hardware during reception.

Since the SCL0 and SDA0 are open-drain outputs in IIC0, pull-up resistors for the serial clock line and the serial data bus line are required.

Figure 5-11. Block Diagram of Serial Interface IIC0

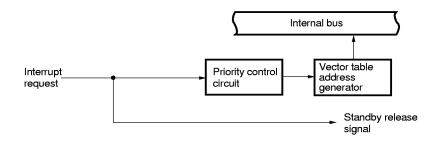
6. INTERRUPT FUNCTIONS

There are 20 interrupt functions of three different types, as shown below.

Non-maskable: 1Maskable : 18Software : 1

*

Table 6-1. Interrupt Source List


Type of	Default		Interrupt Source	Internal/	Vector Table	Basic
Interrupt	Priority ^{Note 1}	Name	Trigger	External	Address	Configuration Type ^{Note 2}
Non- maskable	_	INTWDT	Watchdog timer overflow (watchdog timer mode 1 selected)	Internal	0004H	(A)
Maskable	0	INTWDT	Watchdog timer overflow (interval timer mode selected)			(B)
	1	INTP0	Pin input edge detection	External	0006H	(C)
	2	INTP1			0008H	
	3	INTP2			000AH	
	4	INTP3			000CH	
	5	INTSER0	Generation of serial interface UART0 reception error	Internal	000EH	(B)
	6	INTSR0	End of serial interface UART0 reception		0010H	
	7	INTST0	End of serial interface UART0 transmission		0012H	
	8	INTCSI30	End of serial interface SIO3 (SIO30) transfer		0014H	
	9	INTIIC0	End of serial interface IIC0 transfer		0018H	
	10	INTWTI	Reference time interval signal from watch timer		001AH	
	11	INTTM00	Generation of coincidence signal of 16-bit timer register and capture/compare register 00 (CR00) (when CR00 is specified as compare register)		001CH	
	12	INTTM01	Generation of coincidence signal of 16-bit timer register and capture/compare register 01 (CR01) (when CR01 is specified as compare register)		001EH	
	13	INTTM50	Generation of coincidence signal of 8-bit timer/event counter 50		0020H	
	14	INTTM51	Generation of coincidence signal of 8-bit timer/event counter 51		0022H	
	15	INTAD0	End of conversion by A/D converter		0024H	
	16	INTWT	Watch timer overflow		0026H	
	17	INTKR	Falling edge detection of port 4	External	0028H	(D)
Software	_	BRK	BRK instruction execution	_	003EH	(E)

Notes 1. The default priority is a priority order when two or more maskable interrupt requests are generated simultaneously. **0** is the highest order and 17, the lowest.

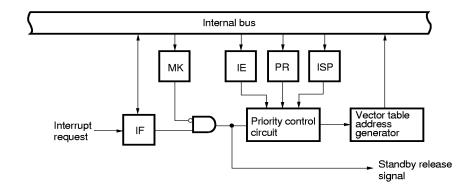

2. Basic configuration types (A) to (E) correspond to (A) to (E) in Figure 6-1, respectively.

Figure 6-1. Basic Configuration of Interrupt Function (1/2)

(A) Internal non-maskable interrupt

(B) Internal maskable interrupt

(C) External maskable interrupt (INTP0 to INTP3)

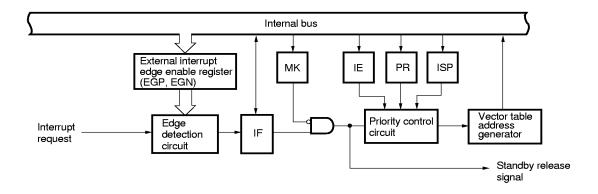
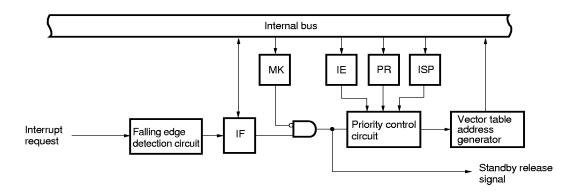
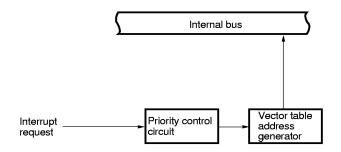




Figure 6-1. Basic Configuration of Interrupt Function (2/2)

(D) External maskable interrupt (INTKR)

(E) Software interrupt

IF : Interrupt request flagIE : Interrupt enable flagISP : In-service priority flagMK : Interrupt mask flag

PR: Priority specification flag

7. EXTERNAL DEVICE EXPANSION FUNCTIONS

The external device expansion functions connect external devices to areas other than the internal ROM, RAM and SFR. Ports 4 to 6 are used for external device connection.

8. STANDBY FUNCTIONS

There are the following two standby functions to reduce the consumption current.

- HALT mode: The CPU operating clock is stopped. The average consumption current can be reduced by intermittent operation in combination with the normal operating mode.
- STOP mode: The system clock oscillation is stopped. The whole operation by the system clock is stopped, so that the system operates with ultra-low power consumption.

Figure 8-1. Standby Function

9. RESET FUNCTIONS

There are the following two reset methods.

- External reset by RESET pin
- Internal reset by watchdog timer runaway time detection

10. INSTRUCTION SET

(1) 8-bit instructions

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

Second operand First operand	#byte	А	r ^{Note}	sfr	saddr	!addr16	PSW	[DE]	[HL]	[HL + byte] [HL + B] [HL + C]	\$addr16	1	None
А	ADDC SUB SUBC AND OR XOR CMP		MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV	MOV XCH	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP		ROR ROL RORC ROLC	
r	MOV	MOV ADD ADDC SUB SUBC AND OR XOR CMP											INC DEC
B, C											DBNZ		
sfr	MOV	MOV											
saddr	MOV ADD ADDC SUB SUBC AND OR XOR CMP	MOV									DBNZ		INC DEC
!addr16		MOV											
PSW	MOV	MOV											PUSH POP
[DE]		MOV											
[HL]		MOV											ROR4 ROL4
[HL + byte] [HL + B] [HL + C]		MOV											
Х													MULU
С													DIVUW

Note Except r = A

(2) 16-bit instructions

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

Second operand First operand	#word	AX	rp ^{Note}	sfrp	saddrp	!addr16	SP	None
AX	ADDW SUBW CMPW		MOVW XCHW	MOVW	MOVW	MOVW	MOVW	
rp	MOVW	MOVW ^{Note}						INCW, DECW PUSH, POP
sfrp	MOVW	MOVW						
saddrp	MOVW	MOVW						
!addr16		MOVW						
SP	MOVW	MOVW						

Note Only when rp = BC, DE or HL

(3) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

Second operand First operand	A.bit	sfr.bit	saddr.bit	PSW.bit	[HL].bit	CY	\$addr16	None
A.bit						MOV1	BT BF BTCLR	SET1 CLR1
sfr.bit						MOV1	BT BF BTCLR	SET1 CLR1
saddr.bit						MOV1	BT BF BTCLR	SET1 CLR1
PSW.bit						MOV1	BT BF BTCLR	SET1 CLR1
[HL].bit						MOV1	BT BF BTCLR	SET1 CLR1
CY	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1			SET1 CLR1 NOT1

(4) Call instructions/branch instructions

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

Second operand First operand	AX	!addr16	!addr11	[addr5]	\$addr16
Basic instruction	BR	CALL BR	CALLF	CALLT	BR, BC, BNC BZ, BNZ
Compound instruction					BT, BF BTCLR DBNZ

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

Preliminary Data Sheet

33

★ 11. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($T_A = 25^{\circ}C$)

Parameter	Symbol		Test Conditions		Ratings	Unit		
Supply voltage	V _{DD}				-0.3 to +6.5	٧		
	AVDD				-0.3 to V _{DD} + 0.3	٧		
	AVREF				-0.3 to V _{DD} + 0.3	٧		
	AVss				-0.3 to +0.3	٧		
Input voltage	VII	· ·	to P17, P20 to P25, P34 to I to P67, P70 to P75, X1, X2, X		-0.3 to V _{DD} + 0.3	٧		
	Vı2	P30 to P33	N-ch open-drain		-0.3 to V _{DD} + 0.3	٧		
Output voltage	Vo				-0.3 to V _{DD} + 0.3	٧		
Analog input voltage	Van	P10 to P17	Analog input pin AVss - 0.3 to AVREF + 0.3 and -0.3 to VDD + 0.3 -10 3, P40 to P47, P50 to P57, P64 to P67, P70 to P75 -15					
High-level output	Іон	Per pin			-10	mA		
current		Total for P00 to P	03, P40 to P47, P50 to P57, P6	64 to P67, P70 to P75	-15	mA		
		Total for P20 t	o P25, P30 to P36					
Low-level output	I _{OL} Note	Per pin for P00 to P03, P20 to P25, P34 to P36, P40 to P47, P64 to P67, P70 to P75 Peak value			20	mA		
					10	mA		
		Per pin for P30	to P47, P64 to P67, P70 to P75 Effective value for P30 to P33, P50 to P57 Peak value	30	mA			
				Effective value	15	mA		
		Total for P00 t	o P03, P40 to P47,	Peak value	50	mA		
		P64 to P67, P7	70 to P75	Effective value	20	mA		
		Total for P20 t	o P25	Peak value	20	mA		
				Effective value	10	mA		
		Total for P30 t	o P36	Peak value	100	mA		
				Effective value	70	mA		
		Total for P50 t	o P57	Peak value	100	mA		
				Effective value	70	mA		
Operating ambient tempature	Та			Peak value	-40 to +85	°C		
Storage temperature	Tstg			Effective value	−65 to +150	°C		

Note The effective value should be calculated as follows: [Effective value] = [Peak value] $\times \sqrt{\text{duty}}$

Caution Product quality may suffer if the absolute maximum rating is exceeded for even single parameter or even momentarily. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions ensuring that the absolute maximum ratings are not exceeded.

Capacitance (TA = 25°C, VDD = Vss = 0 V)

Parameter	Symbol	Tes	MIN.	TYP.	MAX.	Unit	
Input capacitance	CIN	f = 1 MHz Unmeasured pins returned			15	pF	
I/O capacitance	Сю	f = 1 MHz Unmeasured pins returned to 0 V.	P00 to P03, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75			15	pF
			P30 to P33			20	pF

Remark Unless specified otherwise, alternate-function pin characteristics are the same as port pin characteristics.

Main System Clock Oscillation Circuit Characteristics (T_A = -40 to 85°C, V_{DD} = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Ceramic	X1 X2 IC	Oscillation	V _{DD} = 4.5 to 5.5 V	1.0		8.38	MHz
resonator		frequency (fx)Note 1		1.0		5.0	
	+C1 +C2	Oscillation stabilization time ^{Note 2}	After V _{DD} reaches oscillation voltage range MIN.			4	ms
Crystal	X1 X2 IC	Oscillation frequency (fx)Note 1	V _{DD} = 4.5 to 5.5 V	1.0		8.38	MHz
resonator	+ 			1.0		5.0	
		Oscillation stabilization time Note 2	V _{DD} = 4.5 to 5.5 V			10	ms
	·					30	
External	X1 X2	X1 input	V _{DD} = 4.5 to 5.5 V	1.0		8.38	MHz
clock		frequency (fx)Note 1				5.0	
	μPD74HCU04	X1 input high-/low-level width (txH, txL)	V _{DD} = 4.5 to 5.5 V	50		500	ns
				85		500	

- Notes 1. Indicates only oscillation circuit characteristics. Refer to AC Characteristics for instruction execution time.
 - 2. Time required to stabilize oscillation after reset or STOP mode release.
- Cautions 1. When using the main system clock oscillator, wiring in the area enclosed with the broken line in the above figures should be carried out as follows to avoid an adverse effect from wiring capacitance.
 - · Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - · Do not route the wiring near a line through which a high fluctuating current flows.
 - \bullet Always keep the ground point of the oscillator to the same potential as $\mbox{\sc V}_{SS1}.$
 - Do not ground the capacitor to a ground pattern in which a high current flows.
 - Do not fetch signals from the oscillator.
 - When the main system clock is stopped and the system is operated by the subsystem clock, the subsystem clock should be switched again to the main system clock after the oscillation stabilization time is secured by the program.

Subsystem Clock Oscillation	Circuit Characteristics (T ₄ 40 to +85°C Vnn -	· 18 to 55 V)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	XT2 XT1 IC	Oscillation frequency (fxr) ^{Note 1}		32	32.768	35	kHz
	#C4_#C3 ##	Oscillation stabilization time ^{Note 2}	V _{DD} = 4.5 to 5.5 V		1.2	2	s
						10	
External clock	LXT2 XT1 μPD74HCU04 Δ	XT1 input frequency (fxt) ^{Note} 1		32		100	kHz
		XT1 input high-/low-level width (txth, txtl)		5		15	μs

- Notes 1. Indicates only oscillation circuit characteristics. Refer to AC Characteristics for instruction execution time.
 - 2. Time required to stabilize oscillation after VDD reaches oscillation voltage MIN.
- Cautions 1. When using the subsystem clock oscillator, wiring in the area enclosed with the broken line in the above figures should be carried out as follows to avoid an adverse effect from wiring capacitance.
 - · Keep the wiring length as short as possible.
 - · Do not cross the wiring with the other signal lines.
 - · Do not route the wiring near a line through which a high fluctuating current flows.
 - Always keep the ground point of the oscillator to the same potential as Vss1.
 - Do not ground the capacitor to a ground pattern in which a high current flows.
 - · Do not fetch signals from the oscillator.
 - The subsystem clock oscillator is a low-amplitude circuit in order to achieve a low consumption current, and is more prone to malfunction due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.

DC Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Test Condition	ns	MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	P10 to P17, P21, P24, P35, P40 to P47, P50 to P57,	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0.7 V _{DD}		V _{DD}	V
3		P64 to P67, P74, P75		0.8 V _{DD}		V _{DD}	V
	V _{IH2}	P00 to P03, P20, P22, P23, P25,	V _{DD} = 2.7 to 5.5 V	0.8 V _{DD}		V _{DD}	٧
		P34, P36, P70 to P73, RESET		0.85 V _{DD}		V _{DD}	٧
	VIH3	P30 to P33 (N-ch open-drain)	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0.7 V _{DD}		5.5	V
				0.8 V _{DD}		5.5	V
	V _{IH4}	X1, X2	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	V _{DD} - 0.5		V _{DD}	V
				V _{DD} - 0.2		V _{DD}	V
	V _{IH5}	XT1, XT2	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$	0.8 V _{DD}		V _{DD}	V
				0.9 V _{DD}		V _{DD}	V
low P	P10 to P17, P21, P24, P35,	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0		0.3 V _{DD}	V	
	P40 to P47, P50 to P57, P64 to P67, P74, P75		0		0.2 V _{DD}	٧	
	V _{IL2}	P00 to P03, P20, P22, P23, P25,	V _{DD} = 2.7 to 5.5 V	0		0.2 V _{DD}	٧
		P34, P36, P70 to P73, RESET		0		0.15 VDD	٧
	V _{IL3}	P30 to P33	$4.5 \text{ V} \leq V_{DD} \leq 5.5 \text{ V}$	0		0.3 V _{DD}	٧
			$2.7 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$	0		0.2 V _{DD}	٧
			$1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0		0.1 V _{DD}	٧
	VIL4	X1, X2	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0		0.4	V
				0		0.2	V
	V _{IL5}	XT1, XT2	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$	0		0.2 V _{DD}	V
				0		0.1 V _{DD}	V
Output voltage,	Vон	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, \text{ loh} = -1 \text{mA}$		V _{DD} - 1.0		V _{DD}	V
high		Іон = -100 μΑ		V _{DD} - 0.5		V _{DD}	٧
Output voltage, low	V _{OL1}	P30 to P33, P50 to P57	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V},$ $I_{OL} = 15 \text{ mA}$		0.4	2.0	V
		P00 to P03, P20 to P25, P34 to P36, P40 to P47, P64 to P67, P70 to P75	V _{DD} = 4.5 to 5.5 V, I _{OL} = 1.6 mA			0.4	V
	V _{OL2}	lo _L = 400 μA				0.5	V

Remark Unless specified otherwise, alternate-function pin characteristics are the same as port pin characteristics.

DC Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Tes	t Conditions	MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішн1	Vin = Vdd	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P60 to P67, P70 to P75, RESET			3	μΑ
	ILIH2	1	X1, X2, XT1, XT2			20	μΑ
	Ішнз	VIN = 5.5 V	P30 to P33			80	μΑ
Input leakage current, low	ILIL1	Vin = 0 V	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, RESET			-3	μΑ
	I _{LIL2}		X1, X2, XT1, XT2			-20	μΑ
	ILIL3		P30 to P33			-3 ^{Note}	μΑ
Output leakage current, high	Ісон	Vout= VDD				3	μΑ
Output leakage current, low	Ісос	Vout = 0 V				-3	μΑ
Mask option pull-up resistor	R ₁	V _{IN} = 0 V, P60 to P63 P30, P31		15	30	90	kΩ
Software pull- up resistor	R ₂	· ·	·		30	90	kΩ

Note When the pull-up resistor is not included in P30 and P31 (specified by a mask option), a $-200~\mu$ A (MAX.) low-level input leakage current flows only at the 3-clock interval (no wait) when the read instruction to port 3 (P3) and port mode register 3 (PM3) is executed. At times other than this 3-clock interval, a $-3~\mu$ A (MAX.) current flows.

Remark Unless specified otherwise, alternate-function pin characteristics are the same as port pin characteristics.

DC Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Test Condit	tions	MIN.	TYP.	MAX.	Unit
Power supply current ^{Note 1}	IDD1	8.38-MHz crystal oscillation operating mode	$V_{DD} = 5.0 \text{ V } \pm 10\%$		8	16	mA
	ldd2	8.38-MHz crystal oscillation HALT mode	$V_{DD} = 5.0 \text{ V } \pm 10\%$		1.6	3.2	mA
	IDD3	32.768-kHz crystal oscillation	$V_{DD} = 5.0 \text{ V } \pm 10\%$		60	120	μΑ
		perating mode ^{Note 2}	$V_{DD} = 3.0 \text{ V} \pm 10\%$		32	64	μΑ
		$V_{DD} = 2.0 \text{ V } \pm 10\%$		24	48	μΑ	
	I _{DD4}	32.768-kHz crystal oscillation	VDD = 5.0 V ±10%		25	55	μΑ
		HALT mode ^{Note 2}	$V_{DD} = 3.0 \text{ V} \pm 10\%$		5	15	μ A
			VDD = 2.0 V ±10%		2.5	12.5	μΑ
	I _{DD5}	XT1 = Vpp STOP mode	$V_{DD} = 5.0 \text{ V} \pm 10\%$		1	30	μΑ
		When feedback resistor is used	VDD = 3.0 V ±10%		0.5	10	μΑ
			V _{DD} = 2.0 V ±10%		0.3	10	μΑ
	IDD6	XT1 = V _{DD} STOP mode	V _{DD} = 5.0 V ±10%		0.1	30	μΑ
	When feedback resistor is not used		$V_{DD} = 3.0 \text{ V} \pm 10\%$		0.05	10	μΑ
			V _{DD} = 2.0 V ±10%		0.05	10	μΑ

Notes 1. Does not include the on-chip pull-up resistor, AVREF current, and port current.

2. When the main system clock is stopped.

AC Characteristics


(1) Basic Operation ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol		Test Conditio	ns	MIN.	TYP.	MAX.	Unit
Cycle time	Тсү	Operating with	4.5 V ≤ V _{DD} 5	≤ 5.5 V	0.24		32	μs
(Min. instruction		main system clock	ain system clock 2.7 V ≤ V _{DD} < 4.5 V		0.8		32	μs
execution time)					1.6		32	μs
		Operating with subs	system clock		40 ^{Note 1}	122	125	μs
TI00, TI01 input	ttiho, ttilo	$3.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	1		2/f _{sam} + 0.1 Note2			μs
high-/low-level	Z./ V =			2.7 V ≤ V _{DD} < 3.5 V				μs
width	width		$1.8 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$					μs
TI50, TI51 input	fтıs	V _{DD} = 2.7 to 5.5 V	V _{DD} = 2.7 to 5.5 V				4	MHz
frequency					0		275	kHz
TI50, TI51 input	tTIH5, tTIL5	V _{DD} = 2.7 to 5.5 V			100			ns
high-/low-level width					1.8			ns
Interrupt request	tINTH, tINTL	INTP0 to INTP3,		$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	1			μs
input high-/low -level width		P40 to P47			2			μs
RESET	trsL	V _{DD} = 2.7 to 5.5 V			10			μs
low-level width					20			μs

Notes 1. Value when using the external clock. When using a crystal resonator, the value becomes 114 μ s (MIN.).

2. Selection of f_{sam} = fx, fx/4, fx/64 is available with bits 0 and 1 (PRM00, PRM01) of prescaler mode register 0 (PRM0). However, if the TI00 valid edge is selected as the count clock, the value becomes f_{sam} = fx/8.

Tcy vs VDD (at main system clock operation)

(2) Read/Write Operation ($T_A = -40 \text{ to} + 85^{\circ}\text{C}$, $V_{DD} = 4.5 \text{ to} 5.5 \text{ V}$) (1/3)

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		0.5t ey		ns
Address setup time	tads		tcy — 40		ns
Address hold time	tadh		6		ns
Data input time from address	tadd1			(2 + 2n)tcy - 54	ns
	t _{ADD2}			(3 + 2n)tcy - 60	ns
Address output time from $\overline{RD} \downarrow$	trdad		0	100	ns
Data input time from RD↓	tRDD1			(2 + 2n)tcy - 87	ns
	tRDD2			(3 + 2n)tcy - 93	ns
Read data hold time	tпрн		0		ns
RD low-level width	tRDL1		(1.5 + 2n)tcy - 33		ns
	tRDL2		(2.5 + 2n)tcy - 33		ns
$\overline{WAIT} \downarrow input time from \ \overline{RD} \downarrow$	tRDWT1			0.5tcy - 43	ns
	tRDWT2			tcy - 43	ns
$\overline{WAIT} \!\!\downarrow$ input time from $\overline{WR} \!\!\downarrow$	twrwt			0.5tcy — 25	ns
WAIT low-level width	tw⊤∟		(0.5 + 2n)tcy + 10	(2 + 2n)tcy	ns
Write data setup time	twos		60		ns
Write data hold time	t woH		6		ns
WR low-level width	twaL		(1.5 + 2n)tey - 15		ns
RD↓ delay time from ASTB↓	tastrd		6		ns
WR↓ delay time from ASTB↓	tastwr		2tcy - 15		ns
ASTB↑ delay time from RD↑ in external fetch	trdast		0.8tcy – 15	1.2tcy	ns
Address hold time from RD↑ in external fetch	trdadh		0.8tey - 15	1.2tcy + 30	ns
Write data output time from RD↑	trowo		40		ns
Write data output time from WR↓	twrwd		10	60	ns
Address hold time from WR↑	twradh		0.8tcy - 15	1.2tcy + 30	ns
RD↑ delay time from WAIT↑	twrnd		0.8tcy	2.5tcy + 25	ns
WR↑ delay time from WAIT↑	twrwn		0.8tcy	2.5tcy + 25	ns

Remarks 1. tcy = Tcy/4

2. n indicates the number of waits.

(2) Read/Write Operation ($T_A = -40 \text{ to} + 85^{\circ}\text{C}$, $V_{DD} = 2.7 \text{ to} 4.5 \text{ V}$) (2/3)

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		0.5tcy		ns
Address setup time	tads		0.5tcy – 54		ns
Address hold time	tadh		10		ns
Data input time from address	t _{ADD1}			(2 + 2n)tcy - 108	ns
	t _{ADD2}			(3 + 2n)tcy - 120	ns
Address output time from $\overline{RD} \downarrow$	trdad		o	200	ns
Data input time from RD↓	tRDD1			(2 + 2n)tcy - 148	ns
	tRDD2			(3 + 2n)tcy - 162	ns
Read data hold time	tвон		0		ns
RD low-level width	tRDL1		(1.5 + 2n)tcy - 40		ns
	tRDL2		(2.5 + 2n)tcy - 40		ns
$\overline{WAIT} \downarrow input\;time\;from\;\overline{RD} \downarrow$	tnowT1			0.5tcy - 60	ns
	tnowt2			tcy - 60	ns
WAIT↓ input time from WR↓	twswt			0.5tcy - 50	ns
WAIT low-level width	tw⊤∟		(0.5 + 2n)tcy + 10	(2 + 2n)tcy	ns
Write data setup time	twos		60		ns
Write data hold time	twoн		10		ns
WR low-level width	twaL		(1.5 + 2n)tcy - 30		ns
RD↓ delay time from ASTB↓	tastrd		10		ns
$\overline{ m WR}\!\downarrow$ delay time from ASTB $\!\downarrow$	tastwr		2tcy - 30		ns
ASTB↑ delay time from RD↑ in external fetch	trdast		0.8tcy - 30	1.2tcy	ns
Address hold time from RD↑ in external fetch	trdadh		0.8tcy - 30	1.2tcy + 60	ns
Write data output time from RD↑	trowo		40		ns
Write data output time from WR↓	twrwd		20	120	ns
Address hold time from WR↑	twradh		0.8tcy - 30	1.2tcy + 60	ns
RD↑ delay time from WAIT↑	twrnd		0.5tc _Y	2.5tcy + 50	ns
WR↑ delay time from WAIT↑	twrwn		0.5tcy	2.5tcy + 50	ns

Remarks 1. tcy = Tcy/4

2. n indicates the number of waits.

(2) Read/Write Operation ($T_A = -40 \text{ to} + 85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to} 2.7 \text{ V}$) (3/3)

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		0.5t cy		ns
Address setup time	tads		0.5tcy - 60		ns
Address hold time	tadh		20		ns
Data input time from address	tadd1			(2 + 2n)tcy - 233	ns
	t _{ADD2}			(3 + 2n)tcy - 240	ns
Address output time from RD↓	trdad		0	400	ns
Data input time from RD↓	tRDD1			(2 + 2n)tcy - 325	ns
	tRDD2			(3 + 2n)tcy - 332	ns
Read data hold time	tпрн		0		ns
RD low-level width	trol1		(1.5 + 2n)tcy - 92		ns
	tRDL2		(2.5 + 2n)tcy - 92		ns
WAIT↓ input time from RD↓	tRDWT1			0.5tcy - 132	ns
	tRDWT2			tey - 132	ns
WAIT↓ input time from WR↓	twawt			0.5tcy - 100	ns
WAIT low-level width	tw⊤∟		(0.5 + 2n)tcy + 10	(2 + 2n)tcy	ns
Write data setup time	twos		60		ns
Write data hold time	twoн		20		ns
WR low-level width	twaL		(1.5 + 2n)tcy - 60		ns
RD↓ delay time from ASTB↓	tastrd		20		ns
WR↓ delay time from ASTB↓	tastwr		2tcy - 60		ns
ASTB↑ delay time from RD↑ in external fetch	trdast		0.8tcy - 60	1.2tcy	ns
Address hold time from RD↑ in external fetch	trdadh		0.8tcy - 60	1.2tcy + 120	ns
Write data output time from RD↑	trowo		40		ns
Write data output time from WR↓	twrwd		40	240	ns
Address hold time from WR↑	twradh		0.8tcy - 60	1.2tcy + 120	ns
RD↑ delay time from WAIT↑	twrnd		0.5tc _Y	2.5tcy + 100	ns
WR↑ delay time from WAIT↑	twrwn		0.5tcy	2.5tcy + 100	ns

Remarks 1. toy = Toy/4

2. n indicates the number of waits.

(3) Serial Interface (TA = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

(a) 3-wire serial I/O mode (SCK30... Internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK30 cycle time	tkcy1	4.5 V ≤ V _{DD} ≤ 5.5 V	954			ns
		2.7 V ≤ V _{DD} < 4.5 V	1600			ns
			3200			ns
SCK30 high-/low-level	tkH1, tkL1	V _{DD} = 4.5 to 5.5 V	tксү1/2 — 50			ns
width			tkcy1/2 - 100			ns
SI30 setup time	tsık1	4.5 V ≤ V _{DD} ≤ 5.5V	100			ns
(to SCK30↑)		2.7 V ≤ VDD < 4.5V	150			ns
			300			ns
SI30 hold time (from SCK30↑)	tksi1		400			ns
SO30 output dealy time from SCK30↓	tkso1	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of the SCK30 and SO30 output lines.

(b) 3-wire serial I/O mode (SCK30... External clock input)

Parameter	Symbol	Test Con	ditions	MIN.	TYP.	MAX.	Unit
SCK30 cycle time	tkcy2	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.$	5 V	800			ns
		2.7 V ≤ V _{DD} < 4.	5 V	1600			ns
				3200			ns
SCK30 high-/low-level	tkH2, tkL2	4.5 V ≤ V _{DD} ≤ 5.	5 V	400			ns
width		2.7 V ≤ V _{DD} < 4.	5 V	800			ns
				1600			ns
SI30 setup time (to SCK30↑)	tsik2			100			ns
SI30 hold time (from SCK30↑)	tksi2			400			ns
SO30 output dealy time from SCK30↓	tkso2	C = 100 pFNote				300	ns
SCK30 rise, fall time	tR2, tF2	When using external expansion function				160	ns
		When not using external device expansion function	When using 16-bit timer output function			700	ns
			When not using 16-bit timer output function			1000	ns

Note C is the load capacitance of the SO30 output line.

(c) UART mode (Dedicated baud rate generator output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		4.5 V ≤ V _{DD} ≤ 5.5 V			125000	bps
		2.7 V ≤ V _{DD} < 4.5 V			78125	bps
					39063	bps

(d) UART mode (External clock input)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
ASCK0 cycle time	tксүз	$4.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$	800			ns
		$2.7 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$	1600			ns
			3200			ns
ASCK0 high-/low-level width	t кнз,	$4.5~V \leq V_{DD} \leq 5.5~V$	400			ns
	tкьз	$2.7 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$	800			ns
			1600			ns
Transfer rate		$4.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$			39063	bps
		$2.7 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$			19531	bps
					9766	bps
ASCK0 rise, fall time	tra, tra	$V_{DD} = 4.5$ to 5.5 V, when not using external device expansion function			1000	ns
					160	ns

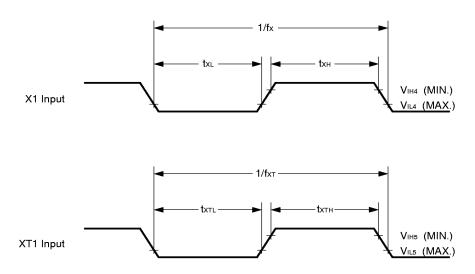
(e) UART mode (Infrared ray data transfer mode)

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
Transfer rate		V _{DD} = 4.5 to 5.5 V		115200	bps
Bit rate allowable error		$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$		±0.87	%
Output pulse width		V _{DD} = 4.5 to 5.5 V	1.2	0.24/fbr ^{Note}	μs
Input pulse width		V _{DD} = 4.5 to 5.5 V	4/fx		μs

Note fbr: Specified baud rate

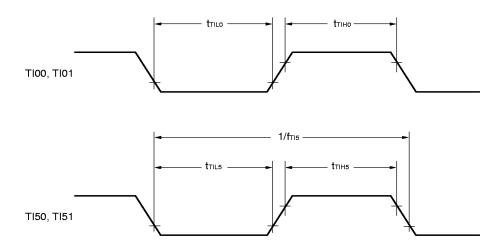
(f) I2C bus Mode

Parameter			Standar	d Mode	High-speed Mode		
		Symbol	MIN.	MAX.	MIN.	MAX.	Unit
SCL0 clock freq	uency	fclk	0	100	0	400	kHz
Bus free time (between stop a	and start condition)	t BUF	4.7	_	1.3	_	μs
Hold time ^{Note 1}		thd:STA	4.0	_	0.6	_	μs
SCL0 clock low-	level width	tLow	4.7	_	1.3	_	μs
SCL0 clock high-level width		tніgн	4.0	_	0.6	_	μs
Start/restart con	dition setup time	tsu:sta	4.7		0.6	_	μs
Data hold time	CBUS compatible master	thd:dat	5.0	_	_	_	μs
	I ² C bus		O ^{Note 2}	_	O ^{Note 2}	0.9 ^{Note 3}	μs
Data setup time		tsu:dat	250	_	100 ^{Note 4}	_	ns
SDA0 and SCL) signal rise time	tr	_	1000	20 + 0.1Cb ^{Note 5}	300	ns
SDA0 and SCL0 signal fall time		tF	_	300	20 + 0.1Cb ^{Note 5}	300	ns
Stop condition setup time		tsu:sто	4.0	_	0.6	_	μs
Spike pulse width controlled by input filter		tsp	_	_	0	50	ns
Capacitive load	per each bus line	Сь	_	400	_	400	pF


- **Notes 1.** On start condition, the first clock pulse is generated after hold period.
 - 2. To fulfill undefined area of the SCL0 falling edge, it is necessary for the device to provide internally SDA0 signal (on VIHmin. of SCL0 signal) with at least 300 ns of hold time.
 - 3. If the device does not extend the SCL0 signal low hold time (tLow), only maximum data hold time thd:DAT needs to be fulfilled.
 - **4.** The high-speed mode I²C bus is available in the standard mode I²C bus system. At this time, the conditions described below must be satisfied.
 - If the device does not extend the SCL0 signal low state hold time $$t_{\text{SU:DAT}} \geq 250~\text{ns}$$
 - If the device extends the SCL0 signal low state hold time

 Be sure to transmit the next data bit to the SDA0 line before the SCL0 line is released (tRmax. + tsu:DAT = 1000 + 250 = 1250 ns by standard mode I²C bus specification).
 - 5. Cb: total capacitance per one bus line (unit: pF)

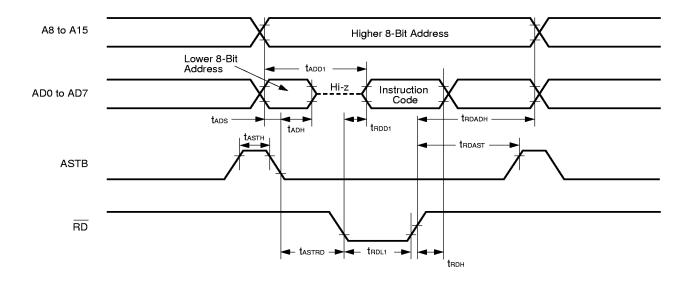
AC Timing Test Point (Excluding X1, XT1 Input)



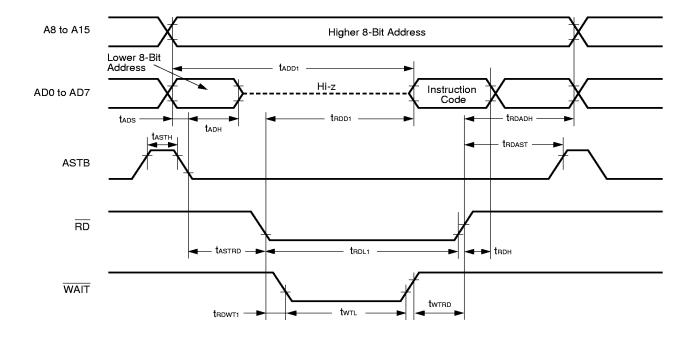
Clock Timing

TI Timing

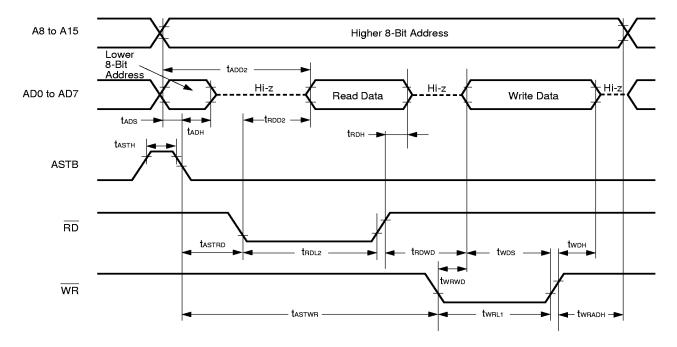
48

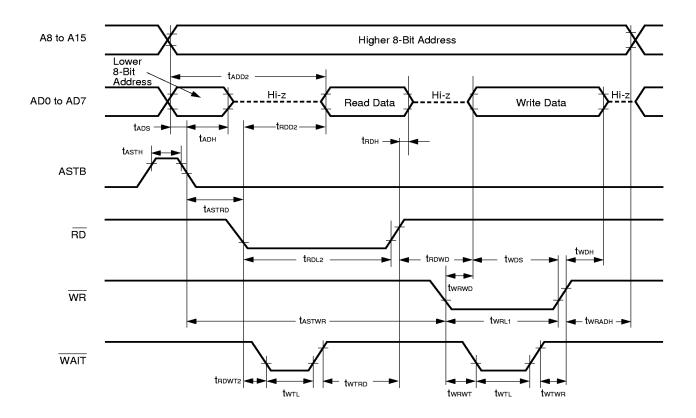


Preliminary Data Sheet



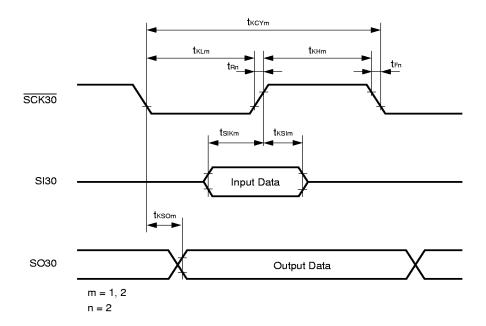
Read/Write Operation


External Fetch (No Wait):

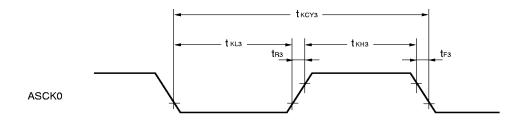

External Fetch (Wait Insertion):

External Data Access (No Wait):

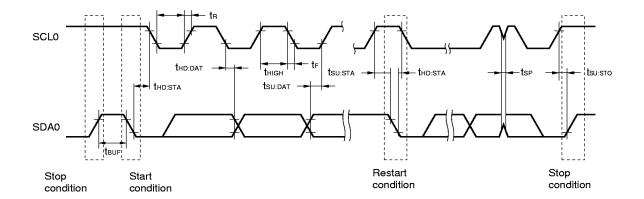
External Data Access (Wait Insertion):



Preliminary Data Sheet



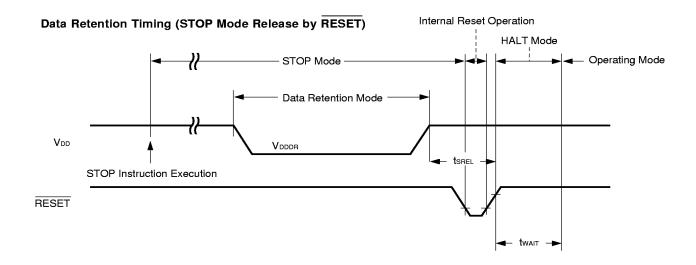
Serial Transfer Timing


3-wire Serial I/O Mode:

UART Mode (External Clock Input):

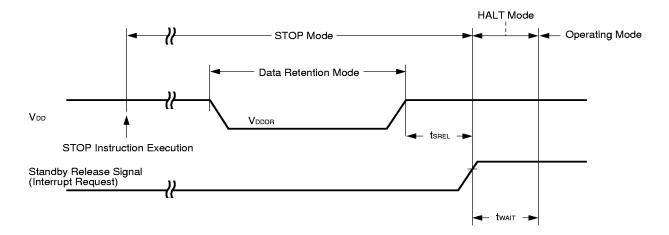
I²C Bus Mode

A/D Converter Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = AV_{DD} = AV_{REF} = 2.7 \text{ to } 5.5 \text{ V}$, $AV_{SS} = V_{SS} = 0 \text{ V}$)

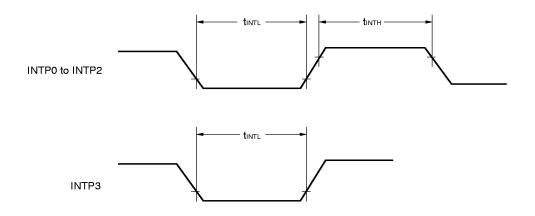

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Resolution			10	10	10	bit
Overall error ^{Note}		4.5 V ≤ AV _{REF} ≤ 5.5 V			±0.4	%
		2.7 V ≤ AV _{REF} < 4.5 V			±0.7	%
Conversion time	Тсому	4.5 V ≤ AV _{REF} ≤ 5.5 V	14		200	μs
		$2.7 \text{ V} \leq \text{AV}_{\text{REF}} < 4.5 \text{ V}$	20		200	μs
Analog input voltage	VIAN		0		AVREF + 0.3	V
Reference voltage	AVREF		2.7		AV _{DD}	V
AVREF resistance	RAIREF		10	20		kΩ

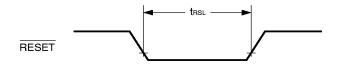
Note Overall error excluding quantization error (±1/2 LSB). It is indicated as a ratio to the full-scale value.

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = -40 to +85°C)

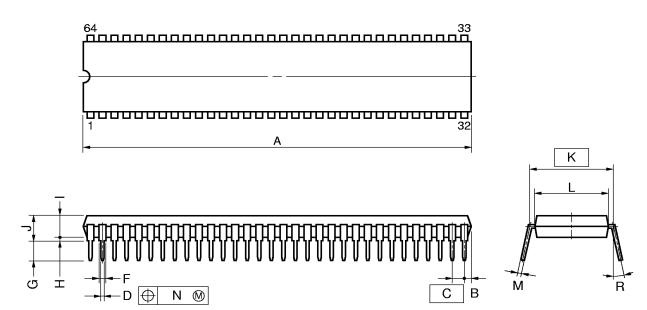

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	VDDDR		1.6		5.5	V
Data retention power supply current	IDDDR	V _{DDDR} = 1.6 V Subsystem clock stop and feed-back resistor disconnected		0.1	10	μΑ
Release signal set time	tsrel		0			μs
Oscillation stabiliza-	twait	Release by RESET		2 ¹⁷ /fx		ms
tion wait time		Release by interrupt request		Note		ms

Note Selection of 2^{12} /fx and 2^{14} /fx to 2^{17} /fx is possible with bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time select register (OSTS).




Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Request Signal)

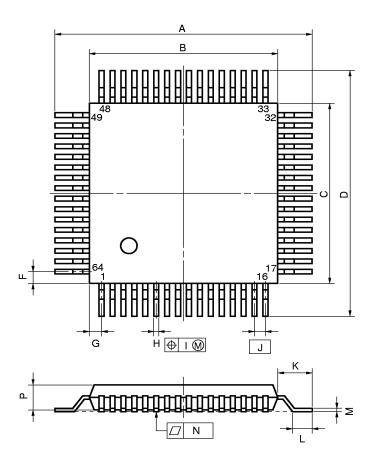
Interrupt Request Input Timing



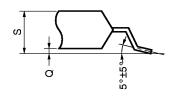
RESET Input Timing

12. PACKAGE DRAWINGS

64-PIN PLASTIC SHRINK DIP (750 mils)


NOTE

- 1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.


ITEM	MILLIMETERS	INCHES
Α	58.68 MAX.	2.311 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
1	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	19.05 (T.P.)	0.750 (T.P.)
L	17.0	0.669
М	$0.25^{+0.10}_{-0.05}$	$0.010^{+0.004}_{-0.003}$
N	0.17	0.007
R	0~15°	0~15°

P64C-70-750A,C-1

64-PIN PLASTIC QFP (14 \times 14)

detail of lead end

P64GC-80-AB8-3

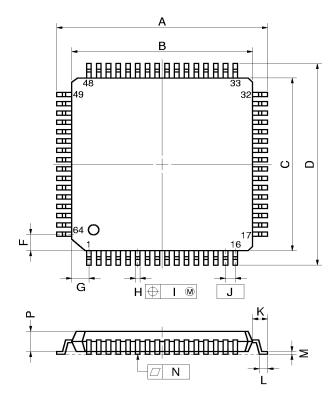
INCHES

0.112 MAX.

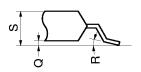
NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

Α	17.6±0.4	0.693±0.016
В	14.0±0.2	0.551+0.009
С	14.0±0.2	0.551+0.009
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	1.0	0.039
Н	0.35±0.10	0.014+0.004
I	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
K	1.8±0.2	0.071±0.008
L	0.8±0.2	0.031+0.009
М	0.15 ^{+0.10} _{-0.05}	0.006+0.004
N	0.10	0.004
Р	2.55	0.100
Q	0.1±0.1	0.004±0.004


MILLIMETERS

2.85 MAX.


Preliminary Data Sheet

ITEM

64-PIN PLASTIC LQFP (12 \times 12)

detail of lead end

NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	14.8±0.4	0.583±0.016
В	12.0±0.2	$0.472^{+0.009}_{-0.008}$
С	12.0±0.2	$0.472^{+0.009}_{-0.008}$
D	14.8±0.4	0.583±0.016
F	1.125	0.044
G	1.125	0.044
Н	0.30±0.10	$0.012^{+0.004}_{-0.005}$
T	0.13	0.005
J	0.65 (T.P.)	0.026 (T.P.)
K	1.4±0.2	0.055±0.008
L	0.6±0.2	$0.024^{+0.008}_{-0.009}$
М	0.15 ^{+0.10} -0.05	$0.006^{+0.004}_{-0.003}$
N	0.10	0.004
Р	1.4	0.055
Q	0.125±0.075	0.005±0.003
R	5°±5°	5°±5°
S	1.7 MAX.	0.067 MAX.

P64GK-65-8A8-1

★ APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD780034Y Subseries. Also refer to (5) Cautions on using development tools.

(1) Language Processing Software

RA78K/0	Assembler package common to 78K/0 Series
CC78K/0	C compiler package common to 78K/0 Series
DF780034	Device file for μPD780034 Subseries
CC78K/0-L	C compiler library source file common to 78K/0 Series

(2) Flash Memory Writing Tools

Flashpro II (FL-PR2)	Flash programmer dedicated to on-chip flash memory microcontroller
FA-64CW	Adapter for flash memory writing
FA-64GC	
FA-64GK ^{Note}	

Note Under development

(3) Debugging Tool

• When using in-circuit emulator IE-78K0-NS

IE-78K0-NS ^{Note}	In-circuit emulator common to 78K/0 Series
IE-70000-MC-PS-B	Power supply unit for IE-78K0-NS
IE-70000-98-IF-C ^{Note}	Interface adapter when using PC-9800 series as host machine (excluding notebook PCs)
IE-70000-CD-IF ^{Note}	PC card and interface cable when using notebook PC of PC-9800 series as host machine
IE-70000-PC-IF-CNote	Interface adapter when using IBM PC/ATTM or compatible as host machine
IE-780034-NS-EM1 ^{Note}	Emulation board common to μ PD780034 Subseries
NP-64CW	Emulation probe for 64-pin plastic shrink DIP (CW type)
NP-64GC	Emulation probe for 64-pin plastic QFP (GC-AB8 type)
NP-64GK ^{Note}	Emulation probe for 64-pin plastic LQFP (GC-8A8 type)
TGK-064SBW	Conversion adapter for connecting target system board designed to mount a 64-pin plastic LQFP (GK-8A8 type) and NP-64GK
EV-9200GC-64	Socket to be mounted on target system board manufactured for 64-pin plastic QFP (GC-AB8 type)
ID78K0-NS ^{Note}	Integrated debugger for IE-78K0-NS
SM78K0	System simulator common to 78K/0 Series
DF780034	Device file common to μPD780034 Subseries

Note Under development

• When using in-circuit emulator IE-78001-R-A

IE-78001-R-A ^{Note}	In-circuit emulator common to 78K/0 Series
IE-70000-98-IF-B IE-70000-98-IF-C ^{Note}	Interface adapter when using PC-9800 series as host machine (excluding notebook PCs)
IE-70000-PC-IF-B IE-70000-PC-IF-C ^{Note}	Interface adapter when using IBM PC/AT or compatible as host machine
IE-78000-R-SV3	Interface adapter and cable when using EWS as host machine
IE-780034-NS-EM1 ^{Note}	Emulation board common to μPD780034 Subseries
IE-78K0-R-EX1 ^{Note}	Emulation probe conversion board necessary to use IE-780034-NS-EM1 on IE-78001-R-A
EP-78240CW-R	Emulation probe for 64-pin plastic shrink DIP (CW type)
EP-78240GC-R	Emulation probe for 64-pin plastic QFP (GC-AB8 type)
EP-78012GK-R	Emulation probe for 64-pin plastic LQFP (GK-8A8 type)
TGK-064SBW	Conversion adapter for connecting target system board designed to mount a 64-pin plastic LQFP (GK-8A8) and EP-78012GK-R.
EV-9200GC-64	Socket to be mounted on target system board manufactured for 64-pin plastic QFP (GC-AB8 type)
ID78K0	Integrated debugger for IE-78001-R-A
SM78K0	System simulator common to 78K/0 Series
DF780034	Device file common to μPD780034 Subseries

Note Under development

(4) Real-time OS

RX78K/0	Real-time OS for 78K/0 Series
MX78K0	OS for 78K/0 Series

(5) Cautions on using development tools

- The ID-78K0-NS, ID78K0, and SM78K0 are used in combinaiton with the DF780034.
- The CC78K/0 and RX78K/0 are used in combination with the RA78K/0 and the DF780034.
- The Flashpro II, FA-64CW, FA-64GC, FA64GK, NP-64CW, NP-64GC, and NP-64GK are products made by Naitou Densei Machidaseisakusho (044-822-3813).

Contact an NEC distributor when purchasing of these products.

• The TGK-064SBW is a product made by TOKYO ELETECH CORPORATION. Refer to: Daimaru Kogyo, Ltd.

Tokyo Electronic Components Division (03-3820-7112)

- Osaka Electronic Components Division (06-244-6672)

 For third party development tools, see the **78K/0 Series Selection Guide (U11126E)**.
- · The host machines and OSs supporting each software are as follows.

Host Machine	PC	EWS
[OS]	PC-9800 series [Windows™]	HP9000 series 700™ [HP-UX™]
	IBM PC/AT or compatible	SPARCstation™ [SunOS™]
Software	[Japanese/English Windows]	NEWS™ (RISC) [NEWS-OS™]
RA78K/0	√ Note	√
CC78K/0	√ Note	√
ID78K0-NS	√	_
ID78K0	V	V
SM78K0	√	_
RX78K/0	√ Note	V
MX78K0	√ Note	V

Note DOS-based software

★ APPENDIX B. RELATED DOCUMENTS

Device Related Documents

Document Name	Document No. (English)	Document No. (Japanese)
μPD780024, 780024Y, 780034, 780034Y Subseries User's Manual	U12022E	U12022J
μPD780031Y, 780032Y, 780033Y, 780034Y Data Sheet	This document	U12166J
μPD78F0034Y Data Sheet	U11994E	U11994J
78K/0 Series User's Manual — Instructions	U12326E	U12326J
78K/0 Series Instruction Table	_	U10903J
78K/0 Series Instruction Set	_	U10904J
μPD780034Y Subseries Special Function Register Table	_	To be prepared

Development Tool Documents (User's Manual)

Document Name		Document No. (English)	Document No. (Japanese)
RA78K0 Assembler Package	Operation	U11802E	U11802J
	Assembly Language	U11801E	U11801J
	Structured Assembly Language	U11789E	U11789J
RA78K Series Structured Assembler Preprocessor		EEU-1402	U12323J
CC78K0 C Compiler	Operation	U11517E	U11517J
	Language	U11518E	U11518J
CC78K/0 C Compiler Application Note	Programming Know-how	EEA-1208	EEA-618
CC78K Series Library Source File		_	U12322J
IE-78K0-NS		To be prepared	To be prepared
IE-78001-R-A		To be prepared	To be prepared
IE-780034-NS-EM1		To be prepared	To be prepared
EP-78240		U10332E	EEU-986
EP-78012GK-R		EEU-1538	EEU-5012
SM78K0 System Simulator — Windows based	Reference	U10181E	U10181J
SM78K Series System Simulator	External Part User Open Interface Specifications	U10092E	U10092J
ID78K0-NS Integrated Debugger	Reference	To be prepared	U12900J
ID78K0 Integrated Debugger, EWS based	Reference	<u> </u>	U11151J
ID78K0 Integrated Debugger, PC based	Reference	U11539E	U11539J
ID78K0 Integrated Debugger, Windows based	Guide	U11649E	U11649J

Caution The above related documents are subject to change without notice. Be sure to read the latest documents before designing.

Embedded Software Documents (User's Manual)

Document Name		Document No. (English)	Document No. (Japanese)
78K/0 Series Real-time OS	Basics	U11537E	U11537J
	Installation	U11536E	U11536J
78K/0 Series OS MX78K0	Basics	U12257E	U12257J

Other Documents

Document Name	Document No. (English)	Document No. (Japanese)
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535E	C10535J
Quality Grades on NEC Semiconductor Devices	C11531E	C11531J
NEC Semiconductor Device Reliability/Quality Control System	C10983E	C10983J
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E	C11892J
Guide to Quality Assurance for Semiconductor Devices	MEI-1202	_
Microcomputer Product Series Guide	_	U11416J

Caution The above related documents are subject to change without notice. Be sure to read the latest documents before designing.